MASTERS PROGRAMME CHEMISTRY

Chapter 1 General provisions
Article 1.1 Definitions
Article 1.2 General information Master’s programme
Article 1.3 Enrolment

Chapter 2 Aim of the programme and exit qualifications
Article 2.1 Aim of the programme
Article 2.2 Exit qualifications

Chapter 3 Admission to the programme
Article 3.1 Entry requirements
Article 3.2 Pre-Master’s programme
Article 3.3 Restrictions on the number of students admitted to the Master’s programme
Article 3.4 Intake dates
Article 3.5 English language requirements
Article 3.6 Free curriculum

Chapter 4 Content and organisation of the programme
Article 4.1 Organisation of the programme
Article 4.2 Compulsory components
Article 4.3 Practical components
Article 4.4 Elective components
Article 4.5 Sequence of examinations
Article 4.6 Participation practical training and tutorials
Article 4.7 Exemption
Article 4.8 Validity period of examinations
Article 4.9 Degree
Article 4.10 Double Master’s programmes
Article 4.11 Participation in courses and rules for priority admission
Article 4.12 Academic Skills in the Master in the R major
Article 4.13 Final research project and final report

Chapter 5 Transitional and final provisions
Article 5.1 Amendments
Article 5.2 Cancelled programme components
Article 5.3 Publication
Article 5.4 Effective date

Appendix 1 Description of the content and study load of the components

Appendix 2 Final attainment levels of the major Science in Society (SS), the major Science Communication (SC) and Major Teaching, and learning objectives minor TESLA and minor Science for Sustainability
Chapter 1. General Provisions

Article 1.1 – Definitions
In addition to part A, the following definitions are used in part B

Personal Education Plan: An individual study plan for the student’s master programme.
Research Project: Compulsory internship-master thesis of 30 EC always resulting in a written report.

Article 1.2 – General information master’s programme
1. The Master’s programme Chemistry, CROHO 66857 is offered on a full-time and part-time basis and the language of instruction is English. This means that the Code of Conduct for Foreign Languages at the UvA 2000 and the provisions laid down in Section 7.2 of the Act apply.
2. The programme has a workload of 120 EC.
3. Within the programme the following tracks are offered:
 - Analytical Sciences;
 - AtoSim (joint operation with Ecole Normale Supérieure in Lyon and La Sapienza University in Rome);
 - Molecular Design, Synthesis and Catalysis;
 - Molecular Simulation and Photonics;
 - Science for Energy and Sustainability.
4. In each Master track the student may choose one out of three majors or two minors (see Article 4.1).
 - Major Science Communication
 - Major Science in Society
 - Major Teaching
 - Minor Tesla
 - Minor Science for Sustainability
5. The student determines the content of the Master’s programme in consultation with the coordinator of the Master’s programme and according to the rules of Chapter 3. The coordinator of the Master’s programme will lay down the content chosen by the student in a Personal Education Plan (PEP). The coordinator submits this PEP together with his recommendation to the Examinations Board. If the student wants to change the contents of the study programme, the student promptly consults with the coordinator of the study programme. If this results in a new PEP the student coordinator submits this to the Examinations Board.

Article 1.3 – Enrolment
The programme starts at the beginning of the first semester (September) and second semester (February) of the study year. This enrolment date ensures a programme that can be expected to be completed within the official period.

Chapter 2. Aim of the programme and exit qualifications

Article 2.1 – Aim of the programme
The aim of the programme is:
1. The master’s programme in Chemistry aspires to be a study programme with international prestige, emanating from, and based on the strong research areas of the research institutes of Chemistry. The aim of the Master’s programme (MSc) in Chemistry is to:
a. educate students to become independent professionals, enabling them to conduct fundamental scientific research, to deal with current scientific knowledge, and to apply this knowledge in new and continuously changing practical situations;
b. actively stimulate interdisciplinary collaboration in the development of science, based on knowledge in the field of chemistry;
c. offer students the possibility to develop skills, knowledge and insight in a specialism in the field of chemistry, with emphasis on formulating relevant scientific questions and on the approach to find answers to these questions;
d. provide student-oriented education that is of a high, internationally recognised quality (Euro Master Chemistry);
e. offer students the opportunity to gain knowledge and insight in an international setting;
f. provide an inspiring academic learning environment, and to offer feasible study tracks to a demanding and heterogeneously composed student population;
g. develop the ability in students to convey acquired knowledge to others.

Article 2.2 – Exit qualifications
1. The graduate of the Master’s programme Chemistry has:
a. a thorough theoretical and practical knowledge of modern chemistry, including the knowledge of other disciplines required for that purpose;
b. a thorough knowledge of theoretical and experimental methods and research experience in at least one sub-area within the chemistry discipline;
c. the ability to become acquainted with other sub-areas of the discipline within a reasonable period of time;
d. the ability to formulate a research plan based on a realistic problem within the chemistry discipline;
e. the ability to analyse research results and to draw conclusions there from;
f. the ability to write a report or an internationally accessible scientific publication, and to participate in discussions on a topic in the field of study;
g. the ability to consult (international) professional literature in the relevant sub-areas and to apply the knowledge gained from that;
h. the ability to apply one’s chemical knowledge in a broader (multidisciplinary) context;
i. the ability to deal with the safety and environmental aspects of chemistry;
j. an employability in those positions for which knowledge and research skills in the field of chemistry are a prerequisite;
k. sufficient knowledge and insight in the social role of chemistry in order to be able to make a sound choice regarding one’s profession, as well as in the exertion of this profession;
l. the ability to cooperate with, and to convey knowledge to other people and to give a presentation both to discipline specialists and to a broader audience.
m. Has good receptive and written productive skills in the English language.
2. In addition to paragraph 1, the student who has completed the track Analytical Sciences has obtained the following track-specific qualifications:
a. a thorough knowledge of and insight in the principles and performance of the main analytical methods and techniques;
b. the proficiency to select suitable strategies and methods for specific analytical questions;
c. the proficiency to translate analytical data into relevant information;
d. the ability to communicate with others about analytical questions and problems.
3. In addition to paragraph 1, the student who has completed the track ATOSIM has obtained the following track-specific qualifications:
a. a thorough scientific knowledge of the field of atomic scale modeling;
b. a proficiency in analyzing and solving scientific problems in the field of atomic scale modeling;
c. the ability to communicate with others about questions and problems in the field of atomic scale modeling.

4. In addition to paragraph 1, the student who has completed the track Molecular Simulation and Photonics has obtained the following track-specific qualifications:
a. a thorough scientific knowledge of the field of molecular simulation and spectroscopy;
b. a proficiency in analyzing and solving scientific problems in the field of molecular simulation and spectroscopy;
c. the ability to communicate with others about questions and problems in the field of molecular simulation and spectroscopy.

5. In addition to paragraph 1, the student who has completed the track Molecular Design, Synthesis and Catalysis has obtained the following track-specific qualifications:
a. a thorough scientific knowledge and understanding of the field of synthesis and catalysis;
b. a proficiency in analyzing and solving problems in the field of synthesis and catalysis;
c. ability to communicate questions and scientific results in the field of synthesis and catalysis.

6. In addition to paragraph 1, the student who has completed the track Science for Energy and Sustainability has obtained the following track-specific qualifications:
a. a thorough knowledge of the scientific, technological and societal challenges for our future associated with energy and sustainability problems;
b. a proficiency in analysing and evaluating the current energy and sustainability problems;
c. a proficiency in applying the acquired theoretical and practical insights in day-to-day practice at an institution, company or organization, strongly focused on providing scientific solutions to current and future energy and sustainability problems;

7. The graduate of the regular programme:
• Is able to independently design experiments including the corresponding controls, conducting and evaluating these within a given period of time;
• is able to incorporate the obtained results and conclusions within the framework of the results of other scientists;
• is able to form a view on the development of scientific research in the field of study;
• is able to quantitatively and qualitatively analyse chemical processes, to incorporate data in existing or in new models, and to present the results at various levels of abstraction;
• has insight in the role of chemistry in a sustainable society.

Chapter 3. Admission to the programme

Article 3.1 – Entry requirements

1. Students who have successfully completed the following degrees may be admitted:
• the Bachelor’s degree in Scheikunde (Chemistry), awarded by a Dutch University;
• the Bachelor’s degree in Pharmaceutical Sciences / Pharmaochemistry, awarded by the VU University Amsterdam;
• the Bachelor’s Degree in Beta-gamma met een Scheikunde major (Liberal Arts and Sciences with a Chemistry Major), awarded by the University of Amsterdam;
• the Bachelor’s degree in Bio-Exact met een Scheikunde major (Bio-Exact with a Chemistry Major), awarded by the University of Amsterdam.

2. Without prejudice to the provisions of paragraph 1, the Examinations Board may grant admission to the study programme when concluding, that the previous education of the candidate is equivalent to the Bachelor’s degree referred to in paragraph 1.
3. Without prejudice to the provisions of paragraphs 1 and 2, the Examinations Board may grant admission to a student whose previous education does not meet aforementioned requirements for admission to the study programme, when concluding that the candidate is able to meet the admission requirements within a reasonable period of time. At the request of a candidate, and when the Examinations Board has decided additional education feasible, the Examinations Board may draw up a Pre-Master’s programme of maximum 30 EC as an admission requirement. After completion of this Pre-Master’s programme a letter of admission will be issued, exclusively for the stated Master’s programme (and track).

4. When the Admission Board decides that the additional required education for a candidate is for not more than 12 EC, direct admission to the master program can be granted. In this case the additional courses to be taken by the candidate will be part of the elective program of the student.

5. When the programme commences, the student must have fully completed the Bachelor’s or pre-master programme allowing admission to this programme.

Article 3.2 – Pre-master’s programme
1. In addition to Article 3.1.3 the Examinations Board may draw up a Pre-master’s programme of maximum 30 EC. The Pre-master’s programme will be offered in the first semester.
2. The Pre-master’s programme consists of a selection of the following components:
 - Structure and properties of molecules (6 EC)
 - Thermodynamics and kinetics (6 EC)
 - Mathematics (6 EC)
 - Organic Chemistry (3 EC)
 - Inorganic and Coordination Chemistry (3 EC)
 - Academic Skills (9-12 EC)

Article 3.3 – Restrictions on the number of students admitted to the Master’s programme
Not applicable

Article 3.4 – Intake dates
A request for admission to the Master’s programme starting in September must be received before 1 April in the case of EU students (including Dutch students) and before 1 February in the case of non-EU students. For the programme starting in February, applications must be received before 1 December for EU students (including Dutch students) and before 1 October for non-EU students. Under exceptional circumstances, the Examinations Board may consider a request submitted after this closing date.

Article 3.5 – English Language Requirements
1. The proficiency requirement in English as the language of instruction can be met by the successful completion of the following examinations or an equivalent:
 - IELTS: 6.5 at least 6 on each sub-score (listening/reading/writing/speaking)
 - TOEFL paper based test: 580
 - TOEFL internet based test: 90
 - TOEFL computer based test: 235
 - Cambridge Advanced English: C
 Please note that the TOEFL-code for the Faculty is 8628.
2. Students possessing a Bachelor’s degree from a Dutch university satisfy the requirement of sufficient command of the English language.
3. Exemption is granted from the examination in English referred to in the first paragraph to students who:
 • had previous education in secondary or tertiary education in an English-speaking country as listed on the UvA website, or;
 • have an English language ‘international BSc’ diploma.

Article 3.6 – Free curriculum

1. Subject to certain conditions, the student has the option of compiling a curriculum of his/her own choice which deviates from the curricula mentioned in article 4.1 of these Regulations. The concrete details of such a curriculum require permission of the Examinations Board.

2. In order to be considered for a degree of this programme, at least one half of the proposed curriculum has to consist of components of the regular study programme.

Chapter 4. Content and organisation of the programme

Article 4.1 – Organisation of the programme

1. The curriculum comprises the following:

<table>
<thead>
<tr>
<th>Components</th>
<th>Regular programme</th>
<th>Major</th>
<th>Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Courses</td>
<td>12-24 EC</td>
<td>12-18 EC</td>
<td>12-24 EC</td>
</tr>
<tr>
<td>Elective courses* for which applies:</td>
<td>36-48 EC</td>
<td>0-6 EC</td>
<td>12-24 EC</td>
</tr>
<tr>
<td>- extension final research project</td>
<td>max 18 EC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- choice of free elective courses</td>
<td>max 12 EC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature review</td>
<td>12 EC</td>
<td>6 EC</td>
<td>12 EC</td>
</tr>
<tr>
<td>Research Projects*/Final research project</td>
<td>36 EC</td>
<td>30 EC</td>
<td>36 EC</td>
</tr>
<tr>
<td>Thesis and presentation</td>
<td>6 EC</td>
<td>6 EC</td>
<td>6 EC</td>
</tr>
<tr>
<td>Academic Skills in the Master</td>
<td>6 EC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Major</td>
<td>-</td>
<td>60 EC</td>
<td>-</td>
</tr>
<tr>
<td>Minor</td>
<td>-</td>
<td>-</td>
<td>30 EC</td>
</tr>
<tr>
<td>Total Study Load</td>
<td>120 EC</td>
<td>120 EC</td>
<td>120 EC</td>
</tr>
</tbody>
</table>

 *) Regarding the elective and compulsory programme further requirements may have to be met, depending on the track chosen within the Chemistry Master’s Programme. *) The research projects are limited to 2 projects. In case of 2 projects one project must comprise at least 36 EC. This project is deemed to be the final project.

<table>
<thead>
<tr>
<th>Components track AtoSim</th>
<th>Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory components</td>
<td>48 EC</td>
</tr>
<tr>
<td>Elective components discipline</td>
<td>30 EC</td>
</tr>
<tr>
<td>Orientation project/seminar/literature study</td>
<td>12 EC</td>
</tr>
<tr>
<td>Research project</td>
<td>30 EC</td>
</tr>
<tr>
<td>Total Study Load</td>
<td>120 EC</td>
</tr>
</tbody>
</table>

A complete list of courses provided by the Master’s programme can be found in Appendix 1. Every component will be tested. Within the Master’s programme different types of testing and different types of teaching methods are used. These are described per component in the course catalogue.

2. The student can choose between the regular programme and a programme containing one of three majors or two minors. The majors and minors are:
 a. Major Science in Society;
b. Major Science Communication;
c. Major Teaching;
d. Minor Tesla;
e. Minor Science for Sustainability.

3. Regarding the majors:
 A major consists of 60 EC. It has to be combined with a research programme, comprising at
 least 60 EC (courses, research project and literature review), and with the general compulsory
 components in order to meet the general requirements of the programme. Students have to
 go through a separate intake procedure for admission to the majors. Students first have to
 finish the obligatory research part of the programme before starting one of the majors. The
 exit qualifications of the majors can be found in appendix 2.

4. Regarding the major Teaching:
 Students who have completed an Educatieve Minor of 30 EC during their Bachelor’s
 programme may submit a non-standard study programme for approval to the Examinations
 Board of the Interfacultaire Lerarenopleidingen, after discussing this non-standard study
 programme with the coordinator of the major Teaching and the coordinator of the Master’s
 programme.

5. Regarding the minor Tesla:
 The minor Tesla consists of 30 EC. It must be combined with a research programme,
 comprising at least 90 EC. The minor consists of a course component and a project- based
 component. This project-based component has to be supervised by a Faculty of Science
 examiner and is subject to prior approval of the Examinations Board. An examiner from
 the research programme has to be appointed as a second assessor. The learning objectives
 of this minor can be found in appendix 2.

6. Regarding the minor Science for Sustainability:
 The minor Science for Sustainability consists of 30 EC. It must be combined with a research
 programme, comprising at least 90 EC. The learning objectives of this minor can be found
 in appendix 2.

Article 4.2 – Compulsory components
The programme includes compulsory components with a maximum study load of 24 EC (18 in
the Science in Society major and the Science and Communication major). The contents and
format of the compulsory components of the various programmes are further described in the
Course Catalogue, stating the necessary entry requirements for successful participation in the
component.

Article 4.3 – Practical components
1. In addition to, or instead of, classes in the form of lectures, the elements of the master’s
 programme can include a practical component as defined in article 1.2 of part A. The UvA
 Course Catalogue contains information on the types of classes in each part of the
 programme. Attendance during practical components is mandatory.
2. When performing practical components, students must adhere to the faculty’s safety
 regulations.
3. The programme consists of research-related components with a study load of at least 42 EC
 (36 in the Science in Society major and the Science and Communication major). The
 research-related components always include the compulsory components:
 • a research assignment with a study load of at least 36 EC (30 in the Science in Society
 major and the Science and Communication major);
 • a final report and a scientific presentation with a study load of 6 EC.
Article 4.4 – Elective components
1. Students choose components in the field of the discipline according to the rules stated in the Course Catalogue.
2. Students may make a choice out of components in the field of the discipline included in the Course Catalogue, and out of components offered by another Dutch or foreign university, that are according to the Examinations Board of a comparable level.
3. Course components successfully completed elsewhere or that are not included in attachment 1 during the programme may supplement the student’s examination programme, subject to prior permission from the Examinations Board.
 a. The courses have to be followed at an accredited university or institute
 b. The course has to be relevant to the master chosen.
4. In exceptional cases students may choose Bachelor’s level free elective components as part of their programme. The Examinations Board will determine whether a free elective component at the Bachelor’s level will be seen as part of the programme and the number of credits that will be allocated to the elective component.
5. In terms of content, elective components must not show too much similarity to other components of the student’s curriculum. The acceptable degree of similarity will be decided by the Examinations Board.
6. A free elective component will only be seen as part of the programme if the Examinations Board has given its prior approval.

Article 4.5 – Sequence and admission requirements
1. Participation in a course may be restricted to students that have completed certain other programme components. Details of such restrictions will be published in the Course Catalogue.
2. A student can start the Final Research Project only after having completed the compulsory theoretical components of the programme. The coordinator of the student’s track can grant exemption of this rule.
3. In exceptional cases, the Examinations Board may, at the student’s reasoned request, deviate from the order mentioned in paragraph 1 of this article, with or without stipulating conditions.
4. In cases where the result of a component has not been determined within the time periods mentioned in Article 4.4 of part A, this component may not be required as prior knowledge for the subsequent component.

Article 4.6 – Participation practical training and tutorials
Not applicable

Article 4.7 – Exemption
1. At the written request of the student, the Examinations Board may exempt the student form taking one or more examination components, if the student:
 a. Has passed a component of an academic or higher professional education programme that is equivalent in both content and level;
 b. Has demonstrated through his/her work and/or professional experience that he/she has sufficient knowledge and skills with regard to the relevant component.
2. This exemption does not apply to the Master’s thesis.
3. Exemptions from examinations (or parts thereof), if granted, will be valid for the same period as indicated in article 4.8.
4. A maximum of 60 EC can be accumulated in the programme through granted exemptions.

Article 4.8 – Validity period of examinations
1. If programmes are taken on a full-time basis, the validity period of passed examinations is three years. If programmes are taken on a part-time basis, the validity period of passed examinations is five years.
2. In individual cases, the Examinations Board is authorised to extend the validity period of successfully completed examinations for a period that it determines.
3. The validity period of passed interim examinations is until the end of the academic year (31 Aug).

Article 4.9 – Degree
A student who passes the final examination of a programme is awarded a Master of Science degree. The degree awarded is stated on the diploma.

Article 4.10 – Double Master’s programme (two-year programmes)
In order to be awarded two Master’s degrees or to have stated on the Master’s diploma that two Master’s programmes have been completed within the discipline, the following requirements must be met:
1. The total programme of the candidate should amount to at least 180 ECTS credits.
2. The candidate’s work for the programme (lectures, research work, etc.), must be of such a standard that all the compulsory requirements of each of the two programmes have been met.
3. The candidate must have conducted separate research work for both Master’s degrees. This may consist of two separate research projects with supervisors from the respective study programmes. In the case of an integrated research project, this must be supervised by two staff members appointed from the two study programmes. Both staff members must assess the work as a pass.
4. The Examinations Boards of both study programmes must approve the student’s double Master’s programme before the student commences on the double Master’s programme.

Article 4.11 – Participation in courses and rules for priority admission
1. Every student must enrol for every course component. To participate in courses, the student must enrol within the period indicated in the UvA Course Catalogue and according to procedures mentioned there. The student may be refused the opportunity to participate if he/she does not enrol or fails to enrol in time.
2. Admission to courses with limited capacity takes place based on previously established and published admission criteria and rules for priority admission, on the understanding that students enrolled in the programme are given priority over others when enrolling for courses in the compulsory part of their programme.
3. Persons who are not enrolled at the University have no right to participate in teaching and examinations.

Article 4.12 – Determining results of examination Academic Skills in the Master
1. The Academic Skills in the Master consist of components with a study load of 6 EC.
2. The English Academic Course (5524ENAC3Y) or a comparable course offered by the VU is compulsory; The Examination Board may grant exemption of this rule, e.g., for native English speakers.
3. The student may complete the Academic Skills in the Master by participating in the relevant components as described in the Course Catalogue.

Article 4.13 – Final research project and final report
1. At the end of the final research project and after handing in the final report the responsible lecturer checks on the basis of the assessment form, if the student has sufficiently achieved the set exit qualifications.
2. For the assessment of the final research project and the final report the advice of a second staff member is always obtained.
3. Students, proficient in the Dutch language write a short non-specialist summary in Dutch; students who do not have a sufficient command of the Dutch Language write this summary in English.

Chapter 5. Transitional and final provisions

Article 5.1 – Amendments
1. The dean shall establish amendments to the part B of these Regulations by independent decision – having heard the board of studies and with due regard for the authority of the relevant advisory bodies.
2. Amendments to these regulations take place following a recommendation by the board of studies relating to the regulations in their entirely, and with the endorsement of a joint meeting of those sections which do not relate to the subject of Article 7.13 paragraphs 2a to g, and paragraph 3 of the Act and the admission requirements for Master’s programmes.
3. Amendments to the part B of these Regulations do not apply to the current academic year unless they can be reasonably assumed not to damage the student’s interest.

Article 5.2 – Cancelled programme components
Not applicable.

Article 5.3 – Publication
1. The dean shall ensure a fitting publication of part A and B of these Regulations and the rules and guideline referred to in the Act.
2. These regulations can be accessed at the website of the Faculty and the UvA Course Catalogue.

Article 4.2 – Effective date
Part B of these Regulations shall come into force as of September 1st, 2014.

Adopted by the dean on 30 September 2014.
Appendix 1 Description of the content and Study Load of the Components.

This list comprises the curriculum components of the Chemistry Master’s programme tracks in the academic year 2014-2015. The contents of the components are described in the Course Catalogue.

Analytical Sciences:

<table>
<thead>
<tr>
<th>Component</th>
<th>Code</th>
<th>EC</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Bio) Molecular Spectroscopy</td>
<td>5254BMS6Y</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Fundamentals of Analytical Sciences</td>
<td>5254FUAS6Y</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Mass Spectrometry</td>
<td>5254MASP6Y</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Separation Sciences</td>
<td>52548SES6Y</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Elective components

<table>
<thead>
<tr>
<th>Component</th>
<th>Code</th>
<th>EC</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Separation Sciences</td>
<td>5254ADSS6Y</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Spectroscopy</td>
<td>52548ADS6Y</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Assessment of Chemical and Natural Hazards</td>
<td>5264ACNH6Y</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Bio-Analysis and Clinical Diagnostics</td>
<td>52548BAC6Y</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Biosystems Data Analysis</td>
<td>5304BIDA6Y</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Chemical Analysis for Forensic Evidence</td>
<td>5254CAFE6Y</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Environmental Chemistry</td>
<td>5254ENCH6Y</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Environmental Measuring Techniques</td>
<td>5264ENMT6Y</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>High-Throughput Screening</td>
<td>52548HTS6Y</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Nuclear Magnetic Resonance</td>
<td>5254NUMR6Y</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Protein Analysis</td>
<td>52548PAN6Y</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>The Analytical Chemist in Industry</td>
<td>5254ANCI6Y</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

ATOSIM:

<table>
<thead>
<tr>
<th>Component</th>
<th>Code</th>
<th>EC</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Theory of Molecules and Matter</td>
<td>5254QTMM6Y</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Scientific Computing and Programming</td>
<td>52548SCP6Y</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Statistical Theory of Complex Molecular Systems</td>
<td>5254STTC6Y</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Understanding Molecular Simulation</td>
<td>5254UNMS6Y</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Understanding Quantum Chemistry</td>
<td>52548UQC6Y</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Elective components

<table>
<thead>
<tr>
<th>Component</th>
<th>Code</th>
<th>EC</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Theoretical Chemistry</td>
<td>52548ATC6Y</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Density Functional Theory for Chemists</td>
<td>5254DFTF6Y</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Relativistic Molecular Quantum Chemistry</td>
<td>52548RMQ6Y</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Scientific Computing</td>
<td>5284SCCO6Y</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Transport Phenomena</td>
<td>5254TRPH6Y</td>
<td>6</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Molecular Design, Synthesis and Catalysis:

<table>
<thead>
<tr>
<th>Component</th>
<th>Code</th>
<th>EC</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio Organic Chemistry</td>
<td>52548BIO6Y</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Coordination and Organometallic Chemistry</td>
<td>5254COOC6Y</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Compulsory components</td>
<td>Code</td>
<td>EC</td>
<td>Period</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>----</td>
<td>--------</td>
</tr>
<tr>
<td>Heterogeneous Catalysis</td>
<td>5254HECA6Y</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Homogeneous Catalysis</td>
<td>5254HOCA6Y</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Molecular Computational Chemistry</td>
<td>5254MOC6Y</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Nuclear Magnetic Resonance</td>
<td>5254NUMR6Y</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Physical Organic Chemistry</td>
<td>5254POC6Y</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Supramolecular Chemistry and Nanomaterials</td>
<td>5254SUCN6Y</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Synthetic Organic Chemistry</td>
<td>5254SYOC6Y</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Molecular Simulation and Photonics:

<table>
<thead>
<tr>
<th>Compulsory components</th>
<th>Code</th>
<th>EC</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lasers and Quantum Optics</td>
<td>5354LSM6Y</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Statistical Theory of Complex Molecular Systems</td>
<td>5254STTC6Y</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Quantum Theory of Molecules and Matter</td>
<td>5254QTMM6Y</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constrained choice components</th>
<th>Code</th>
<th>EC</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Experimental Techniques</td>
<td>5254AET6Y</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Ultrafast Laser Physics</td>
<td>5354ULL6Y</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Understanding Molecular Simulation</td>
<td>5254UNMS6Y</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Understanding Quantum Chemistry</td>
<td>5254UQC6Y</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective components</th>
<th>Code</th>
<th>EC</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab Initio Molecular Dynamics</td>
<td>5254AIMD6Y</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Advanced Molecular Quantum Chemistry</td>
<td>5254AMQ6Y</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Applied Theoretical Chemistry</td>
<td>5254ATC6Y</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Biomolecular Simulations</td>
<td>5254BISI6Y</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Bose Einstein Condensates</td>
<td>5354BOEC6Y</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Density Functional Theory for Chemists</td>
<td>5254DFTF6Y</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Interstellar and Atmospheric (satellite) Remote Sensing</td>
<td>5254AR3Y</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Medical Imaging</td>
<td>5354MEIM6Y</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Molecular Photodynamics</td>
<td>5254MOPH3Y</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Numerical Techniques</td>
<td>5254NUTE6Y</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Relativistic Molecular Quantum Chemistry</td>
<td>5254RMQ6Y</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Scientific Computing</td>
<td>5284SCCO6Y</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Soft Condensed Matter and Biological Physics</td>
<td>5354SCM6Y</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Supramolecular Chemistry and Nanomaterials</td>
<td>5254SUCN6Y</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Transport Phenomena</td>
<td>5254TRPH6Y</td>
<td>6</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Science for Energy and Sustainability:

<table>
<thead>
<tr>
<th>Compulsory components</th>
<th>Code</th>
<th>EC</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Sustainable Energy Technologies</td>
<td>5254CSE6Y</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Project Sustainable Future</td>
<td>5254PRS6Y</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective components</th>
<th>Code</th>
<th>EC</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Issues in Emergent Energy Materials</td>
<td>5354BII6Y</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>BioSolar Cells</td>
<td>5254BIC6Y</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Catalysis for Sustainable Energy</td>
<td>5254CFSE6Y</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>
Coordination and Organometallic Chemistry
5254COOC6Y 6 2

Environmental Chemistry
5254ENCH6Y 6 1

Green Chemistry
5254GRC6Y 6 1

Heterogeneous Catalysis
5254HECA6Y 6 3

Homogeneous Catalysis
5254HOCA6Y 6 5

Management of Sustainably Innovation
5254MAS6Y 6 2

Photosynthesis and Energy
5354PHO6Y 6 4

Photovoltaics
5354PHVO6Y 6 4

Academic skills components for all tracks:

<table>
<thead>
<tr>
<th>Compulsory component</th>
<th>Code</th>
<th>EC</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Academic Course</td>
<td>5524ENA3Y</td>
<td>3</td>
<td>2,3,5,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constrained choice components</th>
<th>Code</th>
<th>EC</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science in Perspective</td>
<td>5524SCPE6Y</td>
<td>6</td>
<td>4,5</td>
</tr>
<tr>
<td>Survival Guide for Scientists</td>
<td>5524SGFS3Y</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>
Appendix 2 Final attainment levels of the major Science in Society (SS), the major Science Communication (SC) and Major Teaching, and learning objectives minor TESLA

A. Final attainment levels of the major Science in Society (SS)
The final attainment levels of the major with regard to the Dublin descriptors are given below.

Dublin descriptor 1: Knowledge and understanding
The graduate has theoretical and practical knowledge of management, policy analysis and entrepreneurship
The graduate:
 a. has insight into the various relevant disciplines in the social and behavioural sciences. More specifically, the student acquires insight into:
 o important concepts and theories in the field of policy science, management studies, and entrepreneurship;
 o the relation of these gamma sciences to the beta sciences;
 b. has insight into concepts and the latest theories, research methodologies, analytical models and important research questions related to interdisciplinary research for addressing societal problems;
 c. has knowledge of, and insight into, relevant concepts and theories for effective communication and collaboration;

Dublin descriptor 2: Applying knowledge and understanding
The graduate is experienced in carrying out interdisciplinary research, in applying techniques specific to the subject area and in applying scientific knowledge to societal problems.
The graduate:
 a. has the ability to integrate knowledge from the beta and gamma sciences, as well as from science and practice;
 b. can apply scientific knowledge to formulate solutions to societal problems and assess them for appropriateness and societal relevance;
 c. adopts an appropriate attitude towards the correct and unbiased use and presentation of data.

Dublin descriptor 3: Making judgements
The graduate is able to independently and critically judge information.
The graduate is able to:
 a. independently acquire information in relevant scientific areas through a literature review and by conducting empirical research, as well as evaluate such information critically;
 b. select and order information, distinguish essentials from trivialities, and recognize connections;
 c. formulate personal learning objectives and critically evaluate own performance, both introspectively and in discussion with others.

Dublin descriptor 4: Communication
The graduate is able to transfer knowledge and skills related to his/her subject area to other people and to adequately reply to questions and problems posed within society.
The graduate:
 a. has acquired skills to report orally and in writing on research results in English;
 b. has the ability to communicate research conclusions, and the knowledge and rationale underpinning them, to specialist audiences and non-specialist audiences clearly and
unambiguously;
c. can collaborate with researchers from various scientific disciplines;
d. can make essential contributions to scientific discussions about plans, results and consequences of research.

Dublin descriptor 5: Learning skills
The graduate has developed learning skills that enable him/her to continue with self-education and development within the subject area.
The graduate:
a. has acquired skills to develop a research plan, giving details of the problem statement, objectives, research questions, research approach, research methods, and planning;
b. is familiar with the general scientific journals, such as Nature and Science, and with journals in the specialisation, such as Research Policy, Health Policy, Science, Technology & Human Values, Social Science & Medicine, and International Journal on Technology Management;
c. has the learning skills to allow him/her to continue to study in a manner that may be largely self-directed or autonomous (life-long learning).

B. Final attainment levels of the major Science Communication (SC)
The MSc graduate possesses an academic attitude, skills and competences to operate at the interface of science and society aiming to contribute to a fruitful science-society dialogue. This means that Master’s graduates have the following focus:

- Understanding the dynamic relationship between science and society
- Translating information from the natural sciences to society and vice versa
- Shaping the dialogue between science and society

Knowledge

- Knowledge of and insight into the relevant concepts and theories in the field of science communication, sociology, communication science, philosophy and science & technology studies in relation to the natural sciences
- Familiarity with scientific journals in the field of science communication and science & technology studies, as well as familiarity with a variety of popular-scientific media
- Insight into the nature and course of interpersonal and group communication processes relevant to the formal and informal dialogue between science and society
- Insight into relevant concepts and theories for effective communication and collaboration in relation to diverse science-society interactions
- Insight into the popularization of the natural sciences in various media
- Insight into the roles and responsibilities of museums in science communication

Skills

- Independently acquire, analyze and evaluate relevant information in a variety of scientific disciplines, by conducting literature study and empirical research
- Communicate and collaborate effectively with diverse professionals of scientific and nonscientific disciplines as well as lay citizens
- Design and facilitate interactive processes in relation to the science-society dialogue
- Translate information from various natural science disciplines into more generally accessible language and formats
• Produce popular-scientific media output concerning developments in the natural sciences, aimed at a variety of publics
• Contribute to the design of museum exhibitions from the perspective of scientific content management and science communication theory
• Make an intrinsic contribution to the societal discussion of developments in science and technology

C. Final attainment levels of the major Teaching
Aan het eind van de opleiding moet de student beschikken over de kwaliteiten ofwel competenties op het gebied van geïntegreerde kennis, inzicht en vaardigheden behorend bij het beroep van leraar in het eerstegraads gebied van het voortgezet onderwijs. De competenties hebben betrekking op de taakgebieden waarvoor wordt opgeleid: onderwijzen, begeleiden, organiseren, ontwikkelen en onderzoeken, en professionaliseren. De competenties zijn de volgende.

• Interpersoonlijk competent
Je bent interpersoonlijk competent als je in het contact met leerlingen (en ook met anderen) kunt leiden, begeleiden, bemiddelen, stimuleren en confronteren. Daarmee bereik je een klimaat met open communicatie en een sfeer van samenwerking en wederzijds vertrouwen.

• Pedagogisch competent
Je bent pedagogisch competent als je benaderingen kunt ontwerpen, uitvoeren en evalueren om het welbevinden van leerlingen te bevorderen, om ontwikkelings- en gedragsproblemen te signaleren en om groepen en individuen te begeleiden. Daarmee bereik je een veilige leeromgeving waarin leerlingen zich kunnen ontwikkelen tot zelfstandige en verantwoordelijke personen.

• Vakhoudelijk en didactisch competent
Je bent vakhoudelijk en vakdidactisch competent als je je eigen vak gedegen beheert, op basis daarvan aantrekkelijke, effectieve en efficiënte leeractiviteiten kunt ontwerpen, uitvoeren, begeleiden en evalueren. Daarmee bereik je een krachtige leeromgeving voor leerlingen.

• Organisatorisch competent
Je bent organisatorisch competent als je concrete en functionele procedures en afspraken kunt hanteren en als je de leeromgeving en het leren van leerlingen kunt organiseren en faciliteren en de planning kunt bewaken en bijstellen. Daarmee bereik je een overzichtelijke, ordelijke en taakgerichte leeromgeving.

• Competent in het samenwerken met collega’s
Je bent competent in het samenwerken met collega’s als je informatie deelt, actief bijdraagt aan overleg en samenwerkingsverbanden en deelt mee aan collegiale consultatie. Daarmee bevorder je een collegiale en harmonieuze werksfeer.

• Competent in het samenwerken met de omgeving
Je bent competent in het samenwerken met de omgeving als je doelmatige contacten onderhoudt met ouders (verzorgers), maar ook met andere mensen en instanties die te maken hebben met de zorg voor en de opleiding van leerlingen. Daarmee bereik je dat de ontwikkeling van leerlingen op een realistische en constructieve manier wordt ondersteund en dat eventuele problemen tijdig worden onderkend en opgelost.

• Competent in reflectie en onderzoek ten dienste van ontwikkeling

16
D. Learning Objectives Tesla

Main Objective
To offer ambitious science students with a demonstrated excellent Academic and non-Academic track record the opportunity to engage in a final challenge before finishing their research master programme.

On completing the Tesla Programme the graduate has acquired the qualities to bridge Science, Society and Business within complex research and project challenges related to the own scientific background. The graduate is fit to start a career in demanding environments which require abilities to utilize the disciplinary science background (as described in OER B) in work environments within or outside of science.

These qualities will be developed while 1) working on an interdisciplinary project related to the scientific background of the graduate and 2) undergoing intensive training on a range of skills.

General Objectives
The graduate has:

1. The analyzing, problem-solving and synthesizing abilities in order to be able to function at the required academic level
2. The abilities to utilize his or her specific scientific background (as specified in the OER B of the Master Programme in which the student is enrolled) in settings on the interface of science, business and society
3. A series of practical professional, academic and personal skills which result in the ability to
 a. independently set up, manage and execute an interdisciplinary projects at the interface of science, business and society. Thereby utilizing scientific knowledge in contributing to a real demand of a knowledge intensive organization
 b. get acquainted with a field of study in a short period of time by self-study, to form one’s own opinion and to communicate critically and effectively with different audiences on the topic
 c. deal with complex challenges and gather and structure information on different levels to enable professional action in different fields and especially the ability to utilize his/her own scientific background in a non-Academic environment
 d. Communicate effectively with different stakeholders (e.g. business professionals, policymakers) while using appropriate means (e.g. business plans, policy advice).
 e. operate effectively in interdisciplinary teams.
4. An attitude that enables the student to critically reflect on his/her own actions

In doing so the graduate should have acquired the following qualities in the fields of ‘Professional Knowledge & Insight’ and ‘Professional Skills’:

17
Professional Knowledge and Insight
Students should develop professional knowledge and insight regarding bringing “science to value in practice”, especially in relation to their scientific background. More specifically, students should:

a. Obtain understanding of different business practices, discourses and settings with regard to bringing scientific knowledge to value.
b. Develop knowledge on scientific developments in relevant disciplines related to dealing with the societal challenges of 21st century.
c. Obtain understanding of different non-profit practices and settings with regard to bringing scientific knowledge to value.
d. Obtain understanding of different governmental practices and settings with regard to bringing scientific knowledge to value.
e. Increase knowledge and insight of possible career paths and possible roles in bringing scientific knowledge to value.

Professional Skills
Students should develop professional business skills to operate effectively in organizations and groups. More specifically, students should:

f. Develop professional cooperation skills.
 i. Develop presentation skills: the abilities necessary to communicate complex information and deliver professional presentations in different environments.
 ii. Develop feedback skills
 iii. Develop meeting skills: the abilities necessary to host and guide meetings in which complex information, different opinions and positions need to be structured to effectively facilitate collection work.
 iv. Develop teamwork and leadership skills.
 v. Develop interview techniques: abilities necessary to successfully obtain information by means of an interview in different settings.
 vi. Develop reasoning and related skills to structure information: develop the abilities to test arguments and bring propositions towards implementation by convincing others.
 vii. Develop communication and influencing skills.

g. Develop project management skills.
 i. Be able to effectively manage projects on the interface of Science and Practice, including becoming familiar with:
 1. Taking Initiative
 2. Managing the workflow
 a. Preparing a project planning
 b. Use of KPIs in Planning
 c. Prioritizing & adjustment (time management, etc.)
 3. Practical Tools
 a. Effective use of communication technology
 b. Budget management
 4. Team Management
 a. Engaging your interdisciplinary team
 b. Divide and take Responsibility
c. Solving problems
 ii. Get acquainted with consultancy analytics and tools to structure complex challenges & information.
 1. Utilizing consultancy models to structure complex challenges and transform them into workable solutions.

Develop visual thinking skills: the qualities to use visual tools to structure meetings, complex information and group processes.